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Abstract

An inverse phase change heat transfer method has been developed for predicting the time evolution of banks covering the surface of
refractory brick walls inside high temperature smelting furnaces. The presence of these banks is indispensable as they serve as a protective
barrier against the highly corrosive slag, thereby maintaining the structural integrity of the furnace and prolonging its active life. The
numerical model rests on the conjugate gradient solution method with the adjoint equation. It predicts banks thickness and motion rely-
ing on the thermal conditions prevailing outside the furnace and temperature measurements taken at one location inside the brick wall.
Simulations are carried out to examine the effect of different parameters on the predictive capabilities of the method. Results reveal that
the method remains accurate in spite of the fact that the temperature measurements inside the wall are noisy and are taken at depth of
few centimetres only. An example showing how the present inverse method can be used to warn on the imminent loss of the protective
bank during the operation of a smelting furnace is then provided.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Electric arc furnaces (EAFs) are used for material pro-
cessing that requires high powers and temperatures. Their
main applications are the smelting of materials such as cop-
per, nickel calcine, steel, pre-reduced iron ore and the melt-
ing/recycling of scrap metals from the automobile and
metallurgical manufacturing industries [1]. As an example,
a cross view of a typical electric arc smelting furnace is
depicted in Fig. 1. High voltage electrodes (only one elec-
trode is shown here) discharge their electric load in a bath
of electrically conducting slag. The current is carried
between the electrode tips in the slag to generate the heat
(Joule effect) required for the smelting process. Continuous
loading of grained ore is achieved via openings in the vault.
The smelting reaction takes place in the slag layer and heat
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is transferred to the metal layer through the slag/metal
interface and via metal droplets that fall at the bottom of
the bath. Tapping of slag and metal is carried out at regular
time intervals through holes perforated in the lateral walls.
The furnace experiences heat losses from the surface of the
slag to the freeboard gas and to the water cooled vault and
through the refractory brick walls. Few thermocouples are
usually embedded in the refractory brick walls to monitor
their temperature and, as it will be seen in the next section,
to provide some information on the thermal conditions
prevailing inside the furnace.

A fascinating melting/solidification problem that arises
in this type of high power smelting furnace is the formation
of solid layers, called banks, on the inside surface of the
refractory brick walls (Fig. 1). The presence of these banks
is indispensable as they serve as a protective barrier against
the highly corrosive slag, thereby maintaining the integrity
of the furnace and prolonging its active life. On the other
hand, too thick a bank is detrimental to the furnace
throughput as the volume available for smelting is reduced.
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Fig. 1. Cross view of a typical smelting furnace.

Nomenclature

C heat capacity (J/kg K)
D studied configuration thickness (m)
d wall thickness (m)
d(t) direction of descent [Eq. (5b)]
e1, e2 estimation errors [Eqs. (20) and (21)]
f(x, t) liquid fraction
h average heat transfer coefficient (W/m2 K)
k thermal conductivity (W/m K)
L latent heat (J/kg)
q00(t) heat flux (W/m2)
R00cont thermal contact resistance (m2 K/W)
Eb(t) bank thickness (m)
S[q00(t)] objective functional [Eq. (4)]
t time (s)
T(x, t) temperature defined by problem, Eqs. (1)
T1 surrounding temperature (K)
Tl liquidus temperature (K)
Tm(t) measured temperature (K)
Tref reference temperature (K)
Ts solidus temperature (K)
x Cartesian spatial coordinate (m)
xm measurement position (m)

Greek symbols

d(Æ) Dirac delta function

$S[q00(t)] gradient direction [Eq. (16)]
b search step size [Eq. (10)]
c coefficient [Eq. (5c)]
D small variation
dH enthalpy (J/m3)
DT(x, t) sensitivity function defined by problem, Eqs. (9)
e real number
k(x, t) Lagrange multiplier defined by problem, Eqs.

(14)
q density (kg/m3)
r standard deviation of measurement error
x Gaussian distributed random number

Subscripts

0 initial value
1 value in the brick wall
2 value in the slag
f final value
l liquid phase
s solid phase

Superscript

k iteration number
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Keeping banks of optimal size is therefore crucial for the
safe and profitable operation of smelting furnaces. Unfor-
tunately, due to the hostile conditions that prevail in the
bath, probing their shape and their motion is a difficult
task. An alternative is to predict their behaviour with an
inverse heat transfer method. This is precisely the objective
of the present study.

In spite of the fact that investigations have been con-
ducted to predict the heat transfer and flow circulation in
pools of EAFs [2–4], none however have examined the
problem of banks formation. The transient formation of
banks is a complex problem that depends on the energy
transfer from the electrodes to the slag layer (the trans-
ferred arc), on the heat transfer phenomena prevailing
inside the pool and on the way the furnace is designed
and operated. Direct solution of the heat transfer and flow
circulation in the pool for predicting the banks shape and
motion is feasible with modern CFD tools but this
approach is too complex and time consuming to be imple-
mented on line in a control system. Predicting banks for-
mation with an inverse phase change method appears to
be a very promising method.
2. Problem statement and mathematical model

Fig. 2 illustrates the one-dimensional geometry analysed
in the present problem. A thermocouple is embedded at
a depth xm inside the lateral brick wall for recording the
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Fig. 2. Schematic of the inverse heat transfer problem.
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transient temperature Tm(t). The thermal conditions pre-
vailing outside the furnace, i.e., T1 and h, are also known.
The inverse problem then consists of finding the heat flux
q00(t), i.e., the right boundary condition at x = D, that
yields the measured temperature Tm(t). Once this is
achieved, the bank thickness Eb(t) is easily predicted with
a direct phase change heat transfer method [5]. The time
function Eb(t) is calculated as the distance between the
inside surface of the refractory brick wall and the solidus
position.

Inverse heat conduction problems with phase change
have received, over the last two decades, increasing
research attention in the open literature [6–13]. These
investigations focused chiefly on four types of inverse
phase change problems: (1) the melting problem of calcu-
lating the moving front position from temperature mea-
surement in the solid phase [8–12]; (2) the solidification
problem of calculating the front position and boundary
fluxes from temperature measurements in the solid and
liquid phases [6]; (3) the design problem of calculating
the required cooling boundary conditions that achieve
desired freezing front motion and interface fluxes [7] and
(4), the problem of thermal contact resistance estimation
during the solidification process [13]. These problems were
investigated with applications to melting, welding and cast-
ing. None of the afore mentioned studies have examined
however the problem of banks formation inside high
power smelters.

In the present paper, the inverse problem of banks for-
mation is examined by employing the conjugate gradient
solution method with the adjoint equation [13,14]. The
method is adapted to nonlinear heat conduction with non-
isothermal solid/liquid phase change.
3. The direct problem

The mathematical model rests on the following
assumptions:

1. The flow circulation in the slag layer is highly turbulent
and multiphase (solid/liquid/gas). Flow circulation is
caused by a combination of factors, namely, the transfer
of jet momentum at the bath surface, the natural con-
vection resulting from thermal gradients in the system,
the gas bubble driven circulation and the electromag-
netic (Lorentz) forces induced due to the passage of
electric current. Taking into account the combined
effects of theses forces is beyond the scope and the
objectives of the present study. One of the consequences
of the strong flow circulation is, however, that the tem-
perature of the liquid phase is uniform. As a result, it is
assumed that heat transfer in the liquid phase is conduc-
tion dominated and the effect of the vigorous flow circu-
lation is accounted for by means of an empirically
adjusted thermal conductivity kl,eff� kl in the liquid
phase. In spite of its boldness and simplicity, this
approach was successfully used in the past for predict-
ing the overall thermal behaviour of melting furnaces
[15].

2. The temperature gradients across the wall (x direction)
are much larger than the temperature gradients in the
vertical direction so that a one-dimensional analysis
can be applied.

3. The phase change problem is nonisothermal.
4. The thermal contact resistance between the refractory

brick wall and the slag bank is neglected.
5. The slag thermal properties are temperature dependent.
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With the foregoing assumptions, the governing equations
and boundary conditions may be stated as

For the brick wall:

q1C1
oT 1

ot
¼ k1

o
2T 1

ox2
; 0 < x < d and 0 < t 6 tf ð1aÞ

k1

oT 1

ox
¼ hðT 1 � T1Þ; x ¼ 0 and 0 < t 6 tf ð1bÞ

T 1 ¼ T 01; 0 < x < d and t ¼ 0 ð1cÞ

For the slag bath:

q2C2ðT 2Þ
oT 2

ot
¼ o

ox
k2ðT 2Þ

oT 2

ox

� �
� dH

of
ot

;

d < x < D and 0 < t 6 tf ð1dÞ

k2ðT 2Þ
oT 2

ox
¼ q00ðtÞ; x ¼ D and 0 < t 6 tf ð1eÞ

T 2 ¼ T 02; d < x < D and t ¼ 0 ð1fÞ

At the wall/slag interface:

k1

oT 1

ox
¼ k2ðT 2Þ

oT 2

ox
; x ¼ d and 0 < t 6 tf ð1gÞ

T 1 ¼ T 2; x ¼ d and 0 < t 6 tf ð1hÞ

The second term on the right-hand side of Eq. (1d) ac-
counts for the solid/liquid phase change. The enthalpy
dH is defined as dH = q2(C2l � C2s)(T2 � Tref) + q2L. The
liquid fraction f(x, t) varies linearly between the solidus
Ts and the liquidus Tl in the following manner:

f ¼ F ðT 2Þ ¼
0; T 2 6 T s

T 2�T s

T l�T s
; T s < T 2 < T l

1; T 2 P T l

8><
>: ð2Þ

The direct problem given by the set of Eqs. (1) is concerned
with the determination of the temperature fields T1(x, t)
and T2(x, t) for the brick wall and the slag bath, respec-
tively, when the boundary heat flux q00(t) at x = D is
known.

4. The inverse problem

For the inverse problem, the heat flux q00(t) at x = D is
unknown. It may be estimated however by using the tran-
sient reading Tm(t) of the thermocouple located inside the
brick wall at position x = xm. It is assumed here that no
information is available regarding the functional form of
the unknown boundary heat flux, except that it belongs
to the space of square functions in (0, tf), i.e.,
Z tf

0

½q00ðtÞ�2dt <1 ð3Þ

where tf is the time duration of the experiment. The solu-
tion of the inverse problem is then sought by minimizing
the functional

S½q00ðtÞ� ¼
Z tf

0

½T mðtÞ � T 1ðxm; t; q00ðtÞÞ�2dt ð4Þ
where Tm(t) is the measured temperature at the sensor
location xm and T1(xm, t; q00(t)) is the estimated tempera-
ture at the same location. The estimated temperature
T1(xm, t; q00(t)) is obtained from the solution of the direct
problem given by the set of Eqs. (1) using an estimated heat
flux q00(t). Eq. (4) is solved by employing the conjugate
gradient method with the adjoint problem, as described
next.

5. The conjugate gradient method

The iterative procedure for the conjugate gradient
method, as applied to the estimation of the unknown heat
flux q00(t), is given by [14]:

q00kþ1ðtÞ ¼ q00kðtÞ � bkdkðtÞ ð5aÞ

where the superscript k denotes the iteration number. The
direction of descent dk(t) is approximated from the previ-
ous direction of descent dk�1(t):

dkðtÞ ¼ rS½q00kðtÞ� þ ckdk�1ðtÞ ð5bÞ

The conjugation coefficient is defined here by the Polak-
Ribiere expression:

ck ¼
R tf

0
rS½q00kðtÞ� � rS½q00k�1ðtÞ�f grS½q00kðtÞ�dtR tf

0 rS½q00k�1ðtÞ�f g2dt

for k ¼ 1; 2; 3; . . . ð5cÞ

with c0 = 0. In order to implement the iterative procedure
exemplified by Eqs. (5), one needs to develop expressions
for the search step size bk and for the gradient direction
$S[q00k(t)], by making use of two auxiliary problems,
known as the sensitivity problem and the adjoint problem,
respectively.

6. The sensitivity problem and the search step size

The sensitivity functions DT1(x, t) and DT2(x, t) for of
the perturbation of the unknown function are defined as
the directional derivatives of the temperatures T1(x, t)
and T2(x, t), respectively. When the heat flux q00(t) is per-
turbed by an amount eDq00(t), the temperatures T1(x, t)
and T2(x,t) experience variations eDT1(x, t) and eDT2(x, t),
respectively, i.e.,

T 1eðx; tÞ ¼ T 1ðx; tÞ þ eDT 1ðx; tÞ and

T 2eðx; tÞ ¼ T 2ðx; tÞ þ eDT 2ðx; tÞ ð6aÞ

e is a real number and, when used as a subscript, it refers to
a perturbed variable. Due to the nonlinear character of the
heat transfer problem in the slag, the perturbation in the
temperature T2(x, t) causes variations on the tempera-
ture-dependent properties of the slag, as well as on the li-
quid fraction given by Eq. (2). The resulting perturbed
quantities are linearized as
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k2eðT 2eÞ ¼ k2ðT 2 þ eDT 2Þ � k2ðT 2Þ þ
dk2

dT 2

� �
eDT 2 ð6bÞ

C2eðT 2eÞ ¼ C2ðT 2 þ eDT 2Þ � C2ðT 2Þ þ
dC2

dT 2

� �
eDT 2 ð6cÞ

F eðT 2eÞ ¼ F ðT 2 þ eDT 2Þ � F ðT 2Þ þ
dF
dT 2

� �
eDT 2 ð6dÞ

The perturbed form of the direct problem (Eqs. (1)) is then
written as

For the brick wall:

q1C1

oT 1e

ot
¼ k1

o2T 1e

ox2
; 0 < x < d and 0 < t 6 tf ð7aÞ

k1

oT 1e

ox
¼ hðT 1e � T1Þ; x ¼ 0 and 0 < t 6 tf ð7bÞ

T 1e ¼ T 01; 0 < x < d and t ¼ 0 ð7cÞ

For the slag bath:

q2C2eðT 2eÞ
oT 2e

ot
¼ o

ox
k2eðT 2eÞ

oT 2e

ox

� �
� ðAT 2e � BÞ oF eðT 2eÞ

ot
;

d < x < D and 0 < t 6 tf ð7dÞ

k2eðT 2eÞ
oT 2e

ox
¼ q00ðtÞ þ eDq00ðtÞ; x ¼ D and 0 < t 6 tf ð7eÞ

T 2e ¼ T 02; d < x < D and t ¼ 0 ð7fÞ

At the wall/slag interface:

k1

oT 1e

ox
¼ k2eðT 2eÞ

oT 2e

ox
; x ¼ d and 0 < t 6 tf ð7gÞ

T 1e ¼ T 2e; x ¼ d and 0 < t 6 tf ð7hÞ

where A = q2(C2l � C2s) and B = A Tref � q2L.
Finally, the sensitivity problem is calculated by applying

the following limiting process:

Lim
e!0

DeðT eÞ � DðT Þ
e

¼ 0 ð8Þ

D(T) and De(Te) stand for the equations of the original di-
rect problem (Eqs. (1)) (without perturbations) and for the
equations of the perturbed direct problem (Eqs. (7)),
respectively. The resulting sensitivity functions DT1(x, t)
and DT2(x, t) are then formulated as

For the brick wall:

q1C1

oDT 1

ot
¼ k1

o2DT 1

ox2
; 0 < x < d and 0 < t 6 tf ð9aÞ

k1
oDT 1

ox
¼ hDT 1; x ¼ 0 and 0 < t 6 tf ð9bÞ

DT 1 ¼ 0; 0 < x < d and t ¼ 0 ð9cÞ

For the slag bath:

q2

o½C2ðT 2ÞDT 2�
ot

¼ o2½k2ðT 2ÞDT 2�
ox2

� AT 2

oðDT 2F 0ðT 2ÞÞ
ot

� ADT 2

oF ðT 2Þ
ot

þ B
oðF 0ðT 2ÞDT 2Þ

ot
;

d < x < D and 0 < t 6 tf ð9dÞ
o½k2ðT 2ÞDT 2�
ox

¼ Dq00ðtÞ; x ¼ D and 0 < t 6 tf ð9eÞ

DT 2 ¼ 0; d < x < D and t ¼ 0 ð9fÞ

At the wall/slag interface:

k1

oDT 1

ox
¼ o½k2ðT 2ÞDT 2�

ox
; x ¼ d and 0 < t 6 tf ð9gÞ

DT 1 ¼ DT 2; x ¼ d and 0 < t 6 tf ð9hÞ

where F 0 is the first derivative of the function F with respect
to the temperature T2.

An expression for the search step size bk is obtained by
minimizing the functional provided in Eq. (4) with respect
to bk at each iteration k, that is

min
bk

S½q00kþ1ðtÞ�

¼ min
bk

Z tf

0

½T mðtÞ � T 1ðxm; t; q00kðtÞ � bkdkðtÞÞ�2dt ð10aÞ

By linearizing the term T1(xm, t; q00k(t) � bkdk(t)) and mak-
ing dk(t) = Dq00k(t), we obtain

T 1ðxm; t; q00kðtÞ � bkdkðtÞÞ

� T 1ðxm; t; q00kðtÞÞ � bk oT 1

oq00kðtÞDq00kðtÞ ð10bÞ

Let DT 1ðxm; t; dkðtÞÞ ¼ oT 1

oq00kðtÞDq00kðtÞ, and then Eq. (10b) can
be written as

T 1ðxm; t; q00kðtÞ � bkdkðtÞÞ
� T 1ðxm; t; q00kðtÞÞ � bkDT 1ðxm; t; dkðtÞÞ ð10cÞ

DT1(xm, t; dk(t)) is the solution of the sensitivity problem at
the sensor position xm, obtained from Eqs. (9) by setting
Dq00k(t) = dk(t).

Substituting of Eq. (10c) into Eq. (10a) yields

min
bk

S½q00kþ1ðtÞ� ¼ min
bk

Z tf

0

½T mðtÞ � T 1ðxm; t; q00kðtÞÞ

þ bkDT 1ðxm; t; dkðtÞÞ�2dt ð10dÞ

By performing the minimization above, the following
search step size is obtained:

bk ¼
R tf

0
½T 1ðxm; t; q00kðtÞÞ � T mðtÞ�DT 1ðxm; t; dkðtÞÞdtR tf

0
½DT 1ðxm; t; dkðtÞÞ�2dt

ð10eÞ
7. The adjoint problem and the gradient equation

To derive the adjoint problem, both differential equa-
tions (1a) and (1d) of the direct problem are multiplied
by the Lagrange multipliers k1(x, t) and k2(x, t), respec-
tively. Integrating the resulting expressions over time and
in the corresponding space domains and adding the result-
ing equation to the functional given by Eq. (4), one obtains
the following extended functional:
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S½q00ðtÞ� ¼
Z tf

0

½T mðtÞ�T 1ðxm; t;q00ðtÞÞ�2dt

þ
Z tf

t¼0

Z d

x¼0

k1ðx; tÞ k1

o
2T 1

ox2
�q1C1

oT 1

ot

� �
dxdt

þ
Z tf

t¼0

Z D

x¼d
k2ðx; tÞ

o

ox
k2ðT 2Þ

oT 2

ox

� �
�dH

of
ot

�

�q2C2ðT 2Þ
oT 2

ot

�
dxdt ð11Þ

It is assumed here that the extended functional given by
Eq. (11) is perturbed by an amount eDS[q00(t)] when the
heat flux q00(t) is perturbed by an amount eDq00(t). The var-
iation of the extended functional is then obtained by apply-
ing the limiting process

DS½q00ðtÞ� ¼ Lim
e!0

S½q00ðtÞ þ eDq00ðtÞ� � S½q00ðtÞ�
e

ð12Þ

which yields

DS½q00ðtÞ� ¼ 2

Z tf

t¼0

Z d

x¼0

½T 1�T mðtÞ�dðx� xmÞDT 1dxdt

þ
Z tf

t¼0

Z d

x¼0

k1ðx; tÞ k1

o
2DT 1

ox2
�q1C1

oDT 1

ot

� �
dxdt

þ
Z tf

t¼0

Z D

x¼d
k2ðx; tÞ

o2½k2ðT 2ÞDT 2�
ox2

�

�AT 2

oðDT 2F 0ðT 2ÞÞ
ot

�ADT 2

oF ðT 2Þ
ot

þB
oðF 0ðT 2ÞDT 2Þ

ot
�q2

o½C2ðT 2ÞDT 2�
ot

�
dxdt ð13aÞ

Integrating the last two terms on the right-hand side of the
above equation and using the boundary and initial condi-
tions for the sensitivity problem (Eqs. (9)), we obtain

DS½q00ðtÞ� ¼
Z tf

t¼0

Z d

x¼0

q1C1

ok1

ot
þ k1

o2k1

ox2

�

þ2½T 1�T mðtÞ�dðx� xmÞ
�
DT 1 dxdt

þ
Z tf

t¼0

Z D

x¼d
q2C2ðT 2Þ

ok2

ot
þ k2ðT 2Þ

o2k2

ox2

�

�Ak2

oF ðT 2Þ
ot

�B
ok2

ot
F 0ðT 2ÞþA

oðk2T 2Þ
ot

F 0ðT 2Þ
�

�DT 2 dxdtþ
Z tf

t¼0

k2ðT 2Þ
ok2

ox

����
x¼d

� k1

ok1

ox

����
x¼d

� �

�DT 1ðd; tÞdtþ
Z tf

t¼0

k1

oDT 1

ox

����
x¼d

½k1ðd; tÞ�k2ðd; tÞ�dt

þ
Z tf

t¼0

k1

ok1

ox

����
x¼0

�hk1ð0; tÞ
� �

DT 1ð0; tÞdt

�
Z tf

t¼0

k2ðT 2Þ
ok2

ox

����
x¼D

DT 2ðD; tÞdt
�
Z d

x¼0

q1C1k1ðx; tfÞDT 1ðx; tfÞdx

þ
Z D

x¼d
Bk2ðx; tfÞF 0ðT 2ðx; tfÞÞDT 2ðx; tfÞdx

�
Z D

x¼d
q2C2ðT 2ðx; tfÞÞk2ðx; tfÞDT 2ðx; tfÞdx

�
Z D

x¼d
Ak2ðx; tfÞT 2ðx; tfÞDT 2ðx; tfÞF 0ðT 2ðx; tfÞÞdx

þ
Z tf

t¼0

k2ðD; tÞDq00ðtÞdt ð13bÞ

The boundary value problem for the Lagrange multipliers
k1(x, t) and k2(x, t) is obtained by allowing the first ten inte-
gral terms on the right-hand side of Eq. (13b) to vanish.
This leads to the following adjoint problem:

For the brick wall:

q1C1
ok1

ot
þ k1

o
2k1

ox2
þ 2½T 1 � T mðtÞ�dðx� xmÞ ¼ 0;

0 < x < d and 0 < t < tf ð14aÞ

k1

ok1

ox
¼ hk1; x ¼ 0 and 0 < t < tf ð14bÞ

k1 ¼ 0; 0 < x < d and t ¼ tf ð14cÞ

For the slag bath:

q2C2ðT 2Þ
ok2

ot
þ k2ðT 2Þ

o2k2

ox2
�Ak2

oF ðT 2Þ
ot

�B
ok2

ot
F 0ðT 2Þ

þA
oðk2T 2Þ

ot
F 0ðT 2Þ¼ 0; d < x<D and 0< t< tf ð14dÞ

ok2

ox
¼ 0; x¼D and 0< t< tf ð14eÞ

k2¼ 0; d < x<D and t¼ tf ð14fÞ

At the wall/slag interface:

k1

ok1

ox
¼ k2ðT 2Þ

ok2

ox
; x ¼ d and 0 < t < tf ð14gÞ

k1 ¼ k2; x ¼ d and 0 < t < tf ð14hÞ

Finally, in the limiting process given by (12), the following
integral term is left:

DS½q00ðtÞ� ¼
Z tf

0

Dq00ðtÞk2ðD; tÞdt ð15aÞ

From the assumption that q00(t) 2 L2(0,tf), one can write:

DS½q00ðtÞ� ¼
Z tf

0

Dq00ðtÞrS½q00ðtÞ�dt ð15bÞ

Comparison of Eqs. (15a) and (15b) yields the gradient
equation for the functional:

rS½q00ðtÞ� ¼ k2ðD; tÞ ð16Þ



Table 1
Thermo physical properties of the materials

Brick

q1 2851 kg/m3

C1 1000 J/(kg K)
k1 8 W/(m K)

Slag

q2 3400 kg/m3

C2s = C2l 1026 J/(kg K)
k2s 4 W/(m K)
k2l 877 W/(m K)
L 823000 J/kg
Ts 1730 K
Tl 1890 K
Tref 1973 K
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8. Stopping criterion

In the absence of noise, the iterative process, Eq. (5a), is
repeated until the functional S[q00(t)] satisfies the following
stopping criteria:

S½q00kþ1ðtÞ� � S½q00kðtÞ� < f1 ð17aÞ
where f1 is of the order of 10�4.

In the presence of noise, the discrepancy principal [14]
given by Eq. (17b) is used to stopping the iterative
procedure.

S½q00kþ1ðtÞ� < f2 ð17bÞ
where f2 = r2tf, r is the standard deviation of measurement
errors.

In this case, if the functional S[q00(t)] has a minimum
value that is larger than f2, the criterion given by (17a) is
used.

9. Computational algorithm

The main steps for the solution of the inverse problem
via the conjugate gradient method with the adjoint equa-
tion may be summarized as follows:

First, the iteration number k is set to zero and an initial
value for the unknown heat flux q000(t) is made.

Step 1: The direct problem (set of Eqs. (1)) is solved for
the temperatures T1(x, t) and T2(x, t) at a new
time step;

Step 2: If convergence is satisfied (Eq. (17a) or (17b)),
stop. Otherwise, go to 3;

Step 3: The adjoint problem (set of Eqs. (14)) is solved for
the Lagrange multipliers k1(x, t) and k2(x, t);

Step 4: The gradient of the functional $S[q00(t)] is
obtained from Eq. (16);

Step 5: The conjugation coefficient ck is estimated from
Eq. (5c) and the direction of descent dk(t) is calcu-
lated from Eq. (5b);

Step 6: The sensitivity problem, Eqs. (9), is solved for
DT1(x, t) and DT2(x, t), by setting Dq00(t) = dk(t);

Step 7: The search step size bk is computed from Eq.
(10e);

Step 8: The new estimate q00k+1(t) is obtained from Eq.
(5a); Return to step 1.

Once the inverse solution q00estimatedðtÞ of the unknown
heat flux q00(t) is achieved, the bank thickness Eb(t) is easily
predicted with a direct enthalpy method using the estima-
tion q00estimatedðtÞ.

10. Results and discussion

The above inverse heat transfer method was thoroughly
tested for estimating the unknown heat flux q00(t), and
therefore, for predicting the bank thickness Eb(t). Numeri-
cal simulations were carried out using typical operating
conditions that prevail inside industrial smelting furnaces.
The brick wall is 0.7 m thick and the studied slag layer is
0.5 m wide (Fig. 2). The physical properties of the refrac-
tory bricks and of the slag are summarized in Table 1.
For the left boundary condition, the surrounding tempera-
ture is kept constant, T1 = 300 K, and the average heat
transfer coefficient is set equal to h = 15 W/(m2 K). At time
t = 0, the initial temperature is assumed to be: T0(x) = (x/
D)(900 � T1) + T1 pour 0 6 x 6 D.

The ‘measured temperatures’ Tm(t) were obtained from
the solution T1(xm, t) of the direct conduction-dominated
phase change problem at the sensor location xm, by using
the following prescribed time variation for the heat flux
q00(t):

q00ðtÞ¼

2:4�104þ0:24�104 sinð2pt=86400Þ; 06 t6 86400

0:0; 86400< t6 172800

2:4�104þ0:24�104 sinð2pt=86400Þ; 172800< t6 259200

0:0; 259200< t6 345600

8>>><
>>>:

ð18Þ
The solution for the direct problem subject to the above
time varying heat flux yields, during the four day period,
a bank that reaches three times its maximum thickness of
0.5 m, i.e. the slag layer is completely solidified, and a bank
that passes two times through minimum values. The ‘mea-
sured temperatures’ are then estimated by taking into
account random noise:

T mðtÞ ¼ T 1ðxm; tÞ þ xr ð19Þ
rdetermines the noise level, which may take the value of 0.0
(no measurement error), 2%Tmax and 4%Tmax, Tmax being
the maximum measured temperature at xm. x is a random
number in the range �2.576 6 x 6 2.576. r is the standard
deviation of the measurement errors which are assumed to
be the same for all experimental data, and x is the Gauss-
ian distributed random error. The above range for the x
values corresponds to 99% confidence bound for the tem-
perature measurement.

All simulations presented here were conducted with a
grid size of 70 uniformly distributed control volumes inside
the brick wall and 50 control volumes distributed in the
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Fig. 4. Effect of xm on the predicted bank thickness Eb(t) with r = 0.0.
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slag layer. Calculations performed with finer meshes did
not improve perceptibly the numerical predictions. For
the inverse analysis, calculations are launched with an ini-
tial value of q000(t) = 0.0. This means that the initial estima-
tion of the bank thickness is E0

bðtÞ ¼ 0:5.
To further check the accuracy of the inverse method,

two different estimation errors are defined:

e1 ¼
kq00estimated � q00exactk

2
L2

kq00exactk
2
L2

� 100 ð20Þ

which is the estimation error on the predicted heat flux
q00(t) and

e2 ¼
kEb;estimated � Eb;exactk2

L2

kEb;exactk2
L2

� 100 ð21Þ

which is the estimation error on the predicted bank thick-
ness Eb(t). k � k2

L2
is the L2-norm and the subscripts esti-

mated and exact refer to the estimated and the exact
functions, respectively.

As an example, Figs. 3 and 4 show the effect of the ther-
mocouple position (one is embedded in the brick wall at a
depth of xm = 0.01 m and the other at xm = 0.69 m) on the
predicted heat flux and bank thickness, respectively. Exam-
ination of Fig. 3 reveals that the accuracy of the predicted
heat flux is improved as the distance separating the thermo-
couple from the right boundary condition is reduced. On
the other hand, the effect of this distance on the predicted
bank thickness is nearly imperceptible (Fig. 4). In both
cases, the predictions are excellent. From an industrial
point of view, this finding has important implications:
one can embed the thermocouple at a depth of only one
centimetre inside the brick wall and it will provide reason-
ably accurate estimates of the bank thickness without
affecting the structural integrity of the wall itself.
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Fig. 3. Effect of xm on the predicted heat flux q00(t) with r = 0.0.
The effect of the noise level r on the predicted bank
thickness Eb(t) is illustrated in Fig. 5. Tmax is the maximum
temperature measured at the location xm = 0.10 m. These
results were obtained with a time step of 900 s for the case
r = 2%Tmax and a time step of 450 s for the case r =
4%Tmax. It is seen that the predictions for the bank thick-
ness remain accurate even for noise levels as large as
r = 4%Tmax.The effect of the thermal contact resistance
between the refractory brick wall and the slag bank R00cont

was also investigated. R00cont is a complex function of the slag
composition, which in turn depends on the operating con-
ditions. It is also a function of the brick type and slag infil-
tration into the gaps between the bricks. This resistance
may be taken into account in the model by modifying
Eqs. (1g) and (1h) to
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k1

oT 1

ox
¼ ðR00contÞ

�1ðT 2 � T 1Þ ¼ k2ðT 2Þ
oT 2

ox
;

x ¼ d and 0 < t 6 tf ð22Þ

by changing Eqs. (9g) and (9h) to

k1

oDT 1

ox
¼ ðR00contÞ

�1ðDT 2 � DT 1Þ ¼
o½k2ðT 2ÞDT 2�

ox
;

x ¼ d and 0 < t 6 tf ð23Þ

and by replacing Eqs. (14g) and (14h) by

k1
ok1

ox
¼ ðR00contÞ

�1ðk2 � k1Þ ¼ k2
ok2

ox
;

x ¼ d and 0 < t 6 tf ð24Þ

Simulations were carried out to examine the effect of R00cont

on the predicted bank thickness. Typical values ranging
from 5 · 10�3 m2 K/W to 5 · 10�2 m2 K/W were investi-
gated. As expected, the predictions deteriorate as the mag-
nitude of this resistance increases. Accurate results may
however be obtained simply by embedding the thermocou-
ple deeper inside the brick wall.

The final example illustrates how the above inverse heat
transfer model may be employed, during the operation of a
smelting furnace, to prevent the loss of the protective bank.
In the present case, the bank is not allowed to shrink to a
thickness smaller than say 0.1 m. The heat flux is provided
by Eq. (18). The corresponding bank thickness predicted
by the inverse method with xm = 0.01 m, r = 1%Tmax and
tf = 207000 s is depicted in Fig. 6. This figure reveals that
at time t = tf = 207000 s, the bank is 0.19 m thick and its
melting rate is �v ¼ ds

dt � �7:4� 10�6 m/s. At this rate, it
is then expected that the bank will reach a minimum thick-
ness of 0.1 m at time t = 218684 s. By feeding this informa-
tion to the operating system, the scenario for the heat flux
(Eq. (18)) is then corrected in advance and the loss of the
bank is avoided (Fig. 7).
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11. Conclusion

An inverse phase change heat transfer method has been
developed for predicting the time evolution of banks cover-
ing the surface of refractory brick walls inside high temper-
ature smelting furnaces. The numerical model rests on the
conjugate gradient solution method with the adjoint equa-
tion. It predicts banks thickness and motion relying on the
thermal conditions prevailing outside the furnace and tem-
perature measurements taken at one location inside the
brick wall. Simulations were carried out to examine the
effect of different parameters on the predictive capabilities
of the method. Results have revealed that the method
remains accurate in spite of the fact that the temperature
measurements inside the wall are noisy and are taken at a
depth of only one centimetre. An example showing how
the present inverse method can be used to warn on the
imminent loss of the protective bank during the operation
of a smelting furnace was provided.
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